Distributed Software Development
Web Services with REST

Chris Brooks

Department of Computer Science
University of San Francisco
11-0: Web Services

What is a Web Service?

△ In a nutshell, it’s an interface that allows access to a remote resource using standard Web technologies, such as HTTP, XML, URLs, etc.

This can be anything from a page fetched via an HTTP GET to an XML document retrieved via SOAP and an SDK.

Goals: Make interoperability easier, allow automated exchange of data.
11-1: Web Services

- Advantages:
 - Language and platform independent
 - Uses existing, scalable technology
 - Uses port 80
Extensions of RPC.

- The procedural approach to distributed computation was well-understood in RPC and in OO flavors, such as CORBA and RMI.
- This same model was applied to HTTP transfer of XML-based data.
- First implementation: XML-RPC
 - Easy to use, but limited.
- XML-RPC led to SOAP.
 - More complex, but representationally richer.
 - Designed to help build custom protocols for data exchange.
 - Still a procedural paradigm.
11-3: Approaches to Web Services

- Data-oriented approach

- Rather than specifying how a client should interact with a service, we specify a reference to a data object in the form of a URI.

- Web as a shared information space, rather than as a medium for transporting messages between hosts.

- This is sometimes known as the REST approach.
 - Argument: the rest of the Web operates according to REST, so Web Services should as well.
REST stands for Representational State Transfer

- Idea: Applications work with a representation of a resource (i.e. an XML representation of a song)
- These representations are shared, or transferred between components.
- These representations allow client applications to manage their state.

Data-centric: all services and resources can be referenced with URIs.

Servers respond to a request by providing a representation of an object.
REST is really more of an architectural model than a protocol.

- A recipe for building web-scale applications

In practice, it refers to:

- encoding requests within an URI
- using HTTP to deliver them
- returning results via XML.
Current success stories for the Web are: URLs/URIs, HTTP, XML.

A successful Web services architecture will be built on these.

The Web should be seen as a distributed, universally indexable, shared information source.
11-7: REST vs SOAP

6 REST sees Web problems as ones of accessing information.
 △ HTTP GETs to the most zealous.
 △ Providing URIs to access everything allows one to link Web services directly into the rest of the Web. (for example, a Web service can be referred to in an RDF document as an rdf:resource)

6 SOAP and XML-RPC see Web problems as client-server distributed applications.
 △ Users should be able to send and receive complex data
 △ REST approach may not fit as nicely into apps that need to change state on the server.

6 Here’s an interesting project for someone interested in software architectures ...
We’ll use REST for this lab for some practical reasons:

- Low learning curve compared to SOAP
- Relatively well-documented.
- No funky third-party libs needed.

At its essence, A RESTful program to interface with Amazon just needs to open and read a URI, then parse the resulting XML.
#!/usr/bin/python
import urllib
from xml.dom import minidom

a string that holds the base URL and my subscription ID.
base='http://webservices.amazon.com/onca/xml?
Service=AWSECommerceService&SubscriptionId=00DZ9HPDQ8Z2R2WPWCG2'

open the URI and fetch the contents
returnstr = urllib.urlopen(base +
 '&Operation=ItemSearch&SearchIndex=Books&Keywords=buffy').read()

returnstr is XML - let's parse it and find all the titles.
xmldoc = minidom.parseString(returnstr)
for node in xmldoc.getElementsByTagName('Title') :
 print node.firstChild.data
The URI consists of two parts:

- A base, which is everything before the '?' character.
- A set of key/value pairs, which is everything after the '?'.
 - Separated by '&'
- Your program needs to construct a URI using the proper base and keys.
11-11: Using Amazon’s Web service

6 First, register with Amazon to get a SubscriptionId.

6 Data available:
 △ Product data
 △ Customer content (lists, reviews)
 △ Product listings, including third-party marketplaces.
 △ Shopping carts

6 Some of this is more helpful if you want to set up your own e-Commerce site that uses Amazon’s services.
11-12: Making REST requests to Amazon

The base URI is:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

The remainder of the URI is composed of request parameters.

These indicate your ID, the type of operation you want performed, and other parameters relevant to the search.

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService
 &SubscriptionId=[your subscription ID here]
 &Operation=ItemSearch
 &SearchIndex=Books
 &Keywords=buffy
11-13: Types of operations

- ItemLookup - get information associated with an ItemId
- ItemSearch - get information associated with a keyword(s)
- SimilarityLookup - find items similar to a given ItemId
- BrowseNodeLookup - find the 'browseNode' associated with a given ItemId
- List Lookup/Search - find wish lists or Listmania lists.
- Shopping Cart operations
- Seller lookup - get seller information for a given seller ID.
11-14: Examples

6 Find books related to ‘buffy’

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService & &SubscriptionId=[your subscription ID here] &Operation=ItemSearch &SearchIndex=Books&Keywords=buffy

6 Find information on a particular Buffy book.

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService & &SubscriptionId=[your subscription ID here] &Operation=ItemLookup &ItemId=1569714290

6 Find items similar to this Buffy book:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService & &SubscriptionId=[your subscription ID here] &Operation=SimilarityLookup &ItemId=1569714290
You can also specify what data you would like to get back from a request.

- Small, medium, large
- Specific elements

To get images:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService
& &SubscriptionId=[your subscription ID here]
&Operation=ItemLookup
&ItemId=1569714290&ResponseGroup=Images

To get all info:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService
& &SubscriptionId=[your subscription ID here]
&Operation=ItemLookup
&ItemId=1569714290&ResponseGroup=Large
11-16: Troubleshooting

- You are limited to one request per second per IP address.
- If you’re not getting the results you expect, make sure you’re specifying the correct response groups.
- Don’t forget your SubscriptionId
- You can test out REST queries in your browser.
REST is a data-centric way of viewing Web Services

Every resource or object is represented by a URI.

Advantages:
- Integrates into the rest of the Web
- Easy to use
- No specialized third-party code needed, except for an XML parser.

Disadvantages:
- Working with URIs may be unwieldy for complex data structures.
- Most useful for data retrieval applications
- Harder to use with applications that require two-way exchange with a server.