Data Structures and Algorithms
Spanning Trees

Chris Brooks

Department of Computer Science
University of San Francisco
Given a connected, undirected graph G

- A *subgraph* of G contains a subset of the vertices and edges in G
- A *Spanning Tree* T of G is:
 - subgraph of G
 - contains all vertices in G
 - connected
 - acyclic
21-1: Spanning Tree Examples

Graph

```
0 ---- 3 ---- 1
 |
|
2 3 4
 |
|
5 ---- 6
```
21-2: Spanning Tree Examples

Spanning Tree

0 -- 1

0 -- 2 -- 3

1 -- 4

2 -- 3

5 -- 6
21-3: Spanning Tree Examples

6 Graph

- Graph

Department of Computer Science — University of San Francisco — p.5/27
Spanning Tree Examples

Spanning Tree

0 1
2 3 4
5 6

Department of Computer Science — University of San Francisco — p.6/27
21-5: **Minimal Cost Spanning Tree**

- Minimal Cost Spanning Tree
 - Given a weighted, undirected graph \(G \)
 - Spanning tree of \(G \) which minimizes the sum of all weights on edges of spanning tree
21-6: MST Example
Can there be more than one minimal cost spanning tree for a particular graph?
Can there be more than one minimal cost spanning tree for a particular graph?

YES!

What happens when all edges have unit cost?
Can there be more than one minimal cost spanning tree for a particular graph?

YES!

- What happens when all edges have unit cost?
- All spanning trees are MSTs
Two algorithms to calculate MST:

- **Kruskal’s Algorithm**
 - Build a “forest” of spanning trees
 - Combine into one tree

- **Prims Algorithm**
 - Grow a single tree out from a start vertex
21-12: Kruskal’s Algorithm

1. Start with an empty graph (no edges)
2. Sort the edges by cost
3. For each edge, add to graph if it would not cause a cycle.
21-13: Kruskal’s Algorithm Examples
Proof (by contradiction)

Assume that no optimal MST T contains the minimum cost edge e

Add e to T, which causes a cycle

Remove an edge other than e to break the cycle

$\text{cost } T' \leq T$, a contradiction
Coding Kruskal’s Algorithm:
- Place all edges into a list
- Sort list of edges by cost
- For each edge in the list
 - Select the edge if it does not form a cycle with previously selected edges
 - How can we do this?
21-16: Kruskal’s Algorithm

Determining of adding an edge will cause a cycle

- Start with a forest of V trees (each containing one node)
- Each added edge merges two trees into one tree
- An edge causes a cycle if both vertices are in the same tree
 - (examples)
21-17: Kruskal’s Algorithm

We need to:

△ Put each vertex in its own tree
△ Given any two vertices v_1 and v_2, determine if they are in the same tree
△ Given any two vertices v_1 and v_2, merge the tree containing v_1 and the tree containing v_2

... sound familiar?
Disjoint sets!

Create a list of all edges

Sort list of edges

For each edge \(e = (v_1, v_2) \) in the list

\(\triangledown \) if \(\text{FIND}(v_1) \neq \text{FIND}(v_2) \)

- Add \(e \) to spanning tree
- \(\text{UNION}(v_1, v_2) \)
21-19: Prim’s Algorithm

6 Grow that spanning tree out from an initial vertex

6 Divide the graph into two sets of vertices
 △ vertices in the spanning tree
 △ vertices not in the spanning tree

6 Initially, Start vertex is in the spanning tree, all other vertices are not in the tree
 △ Pick the initial vertex arbitrarily
While there are vertices not in the spanning tree
 - Add the cheapest vertex to the spanning tree
21-21: Prims’s Algorithm Examples
21-22: Prim’s Algorithm

- Use a table – much like Dijkstra table
- Path has the same meaning
- Cost is for vertex \(v_k \)
 - cost to add \(v_k \) to the tree
 - (instead of length of path to \(v_k \))
21-23: Prim’s Algorithm

- Code for Prim’s algorithm is very similar to the code for Dijkstra’s algorithm
- Make *one small change* to Dijkstra’s algorithm to get Prim’s algorithm
void Dijkstra(Edge G[], int s, tableEntry T[]) {
 int i, v;
 Edge e;
 for(i=0; i<G.length; i++) {
 T[i].distance = Integer.MAX_VALUE;
 T[i].path = -1;
 T[i].known = false;
 }
 T[s].distance = 0;
 for (i=0; i < G.length; i++) {
 v = minUnknownVertex(T);
 T[v].known = true;
 for (e = G[v]; e != null; e = e.next) {
 if (T[e.neighbor].distance >
 T[v].distance + e.cost) {
 T[e.neighbor].distance = T[v].distance + e.cost;
 T[e.neighbor].path = v;
 }
 }
 }
}
void Dijkstra(Edge G[], int s, tableEntry T[]) {
 int i, v;
 Edge e;
 for(i=0; i<G.length; i++) {
 T[i].distance = Integer.MAX_VALUE;
 T[i].path = -1;
 T[i].known = false;
 }
 T[s].distance = 0;
 for (i=0; i < G.length; i++) {
 v = minUnknownVertex(T);
 T[v].known = true;
 for (e = G[v]; e != null; e = e.next) {
 if (T[e.neighbor].distance > e.cost) {
 T[e.neighbor].distance = e.cost;
 T[e.neighbor].path = v;
 }
 }
 }
}