1. The following algorithm takes as input a positive int \(n \), an array of \(n \) ints \(A \), and an int \(val \). It returns the number of times that \(val \) occurs in \(A \).

   ```c
   int Count_matches(int A[], int n, int val) {
       int matches = 0;
       for (i = 0; i < n; i++)
           if (A[i] == val) matches++;
       return matches;
   }
   ```

 In order to prove the algorithm is correct, we would define a loop invariant: a predicate \(P(i) \) that depends on the iteration \(i \). We choose the invariant so that

 - It is true after each iteration

 Test \(i < n; \)

 if (A[i] == val) matches++;

 i++;

 - And if it is true after iteration \(i = n-1 \), then the for statement will have correctly counted the number of times \(val \) occurs in \(A \).

 What is the loop invariant \(P(i) \)?

 Note that you do not need to prove that the algorithm is correct.

 After iteration \(i \) is complete \(\text{matches} \) is the number of occurrences of \(val \) in the list \(A[0], A[1], \ldots, A[i] \).

2. Recall the sorting algorithm selection sort.
```c
void Sel_sort(int A[], int n) {
    int i, j, min_loc, tmp;

    for (i = 0; i < n-1; i++) {
        min_loc = i;
        for (j = i+1; j < n; j++)
            if (A[j] < A[min_loc]) min_loc = j;
        tmp = A[i];
        A[i] = A[min_loc];
        A[min_loc] = tmp;
    }
} /* Sel_sort */
```

It takes as input a positive int n and an array A of n ints. It returns in A the same ints sorted into increasing order.

(a) What is a loop invariant $Q(j)$ for the inner loop?

(b) What is a loop invariant $R(i)$ for the outer loop?

You do not have to prove that the algorithm is correct.

(a) After iteration j is complete, min _loc stores the subscript of the smallest element in the list $A[i]$, $A[i+1]$, ..., $A[n-1]$.

(b) After iteration i, is complete the list $A[0]$, $A[1]$, ..., $A[i]$ contains the smallest $i+1$ elements in the input list, and these elements are sorted in increasing order.

There are other possibilities here. For example, $A[i]$ is is the $(i+1)$st smallest element in A, and the elements $A[0]$, $A[1]$, ..., $A[i-1]$ are unchanged by the iteration.